Inverse Scattering Transform and the Theory of Solitons

نویسنده

  • Tuncay Aktosun
چکیده

Scattering data The scattering data associated with a LODE usually consists of a reflection coefficient which is a function of the spectral parameter λ, a finite number of constants λj that correspond to the poles of the transmission coefficient in the upper half complex plane, and the bound-state norming constants whose number for each bound-state pole λj is the same as the order of that pole. It is desirable that the potential in the LODE is uniquely determined by the corresponding scattering data and vice versa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse scattering transform analysis of Stokes-anti-Stokes stimulated Raman scattering.

Zakharov-Shabat–Ablowitz-Kaup-Newel-Segur (ZS–AKNS) representation for Stokes-anti-Stokes stimulated Raman scattering (SRS) is proposed. Periodical waves, solitons and self-similarity solutions are derived. Transient and bright threshold solitons are discussed. December 29, 1994 Sofia

متن کامل

Bethe Ansatz , Inverse Scattering Transform and Tropical Riemann Theta Function in a Periodic Soliton Cellular Automaton for A ( 1 ) n ?

We study an integrable vertex model with a periodic boundary condition associated with Uq ( A (1) n ) at the crystallizing point q = 0. It is an (n+ 1)-state cellular automaton describing the factorized scattering of solitons. The dynamics originates in the commuting family of fusion transfer matrices and generalizes the ultradiscrete Toda/KP flow corresponding to the periodic box-ball system. ...

متن کامل

Reflectionless Analytic Difference Operators I. Algebraic Framework

We introduce and study a class of analytic difference operators admitting reflectionless eigenfunctions. Our construction of the class is patterned after the Inverse Scattering Transform for the reflectionless self-adjoint Schrödinger and Jacobi operators corresponding to KdV and Toda lattice solitons.

متن کامل

A Novel Nonlinear Evolution Equation Integrable by the Inverse Scattering Method

In this report we consider the nonlinear evolution equation (ut +uux)x +u = 0 (Vakhnenko equation – VE) that can be integrated by the inverse scattering transform (IST) method. This equation arose as a result describing the high-frequency perturbations in a relaxing medium. The VE has two families of travelling wave solutions, both of which are stable to long wavelength perturbations. In partic...

متن کامل

On the Achievable Communication Rates of Generalized Soliton Transmission Systems

We analyze the achievable communication rates of a generalized soliton-based transmission system for the optical fiber channel. This method is based on modulation of parameters of the scattering domain, via the inverse scattering transform, by the information bits. The decoder uses the direct spectral transform to estimate these parameters and decode the information message. Unlike ordinary On-...

متن کامل

Spectral stability and time evolution of N-solitons in KdV hierarchy

This paper concerns spectral stability and time evolution of N -solitons in the KdV hierarchy with mixed commuting time flows. Spectral stability problem is analyzed by using a pair of self-adjoint operators with finite numbers of negative eigenvalues. We show that the absence of unstable eigenvalues in the stability problem is related to the absence of negative eigenvalues of these operators i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009